Showing posts with label Team Danger. Show all posts
Showing posts with label Team Danger. Show all posts

Saturday, November 19, 2011

Dibbling in Technology

Hello all, I apologize for the delay in getting this post up. My “lap-top” computer (Dibble 433) succumbed to the rigours of the field last week (roommate sat on it).

Our discussions the week before last focused on the uses and limitations of technology within the field. As time goes on and technological advances continue their endless march towards the singularity/Wall-E, archaeologists finds itself in a bit of a quandary. As Dibble so astutely points out, “'lap-top' computers” are getting smaller every day (433), and the traditional ways of recording data in notebooks and performing analysis by hand are quickly becoming dated. New technologies for recording data more precisely and accurately, as well as the new types of data that emerge as a result of a more expansive toolkit, radically alter the ways in which archaeologists conceive of their work. Though they bring solutions to many existing problems, they also carry, in a manner somewhat akin to the Biblical Plagues, a host of new ones.

We began with a discussion of Zubrow, who addresses some of the issues associated with the growing adoption of technology in “Digital Archaeology.” One of the first points he brought up was whether digital developments were primarily methodological advances, or whether their adoption resulted in the creation of a new theoretical toolkit. While its true that more precise ways of recording data are essentially methodological, its also true that new theories could become necessary in order to address the new types of data being generated.

We also discussed another point that Zubrow made, regarding the greater ubiquity of data generated from technological sources. The open-source effect, in which the data was available to a greater range of people, among a wider array of disciplines, has important consequences. This brought up a discussion of Tdar, a site which hosts archaeological data from a variety of sources, most of which were not peer reviewed, in order to promote greater access to research. One important observation that resulted from an agglomeration of data such as this is the need for a universal standard by which to group and arrange data. A standard format promotes greater accessibility. However, one perceived danger of such a standard is that hinders theoretical advances by constraining possible new avenues for interpreting data.

Our next discussion concerned the work of Andrew Bevan and James Conolly on the island of Kythera, Greece. This study remains the benchmark for the use of GIS and digital data collection, as they covered a ridiculously large amount of the Island's area with an equally ridiculously large array of measurements in order to gain data for the questions they were asking. One of the questions they asked was whether surface visibility affects the amount of artifacts recovered from a site, a question that reminded me of our own efforts to survey the terrain at the graveyard in order to gain a sense of what may or may not be buried beneath the surface. In our case, surface visibility was extremely low, making the placement of our test pits essentially a shot in the dark. Fortunately we were able to rely on previous knowledge of finds in the region in order to better situate our pits, but visibility definitely affected our fieldwork. Surprisingly, or perhaps not so surprisingly, Bevan and Conolly found no significant correlation between surface visibility and artifact finds. Surprising in the sense that archaeologists have long relied on the degree of surface visibility as a means of estimating the possible number of finds in an area. Yet the research showed that there was no significant variation between the artifacts found in areas with low visibility vs high visibility, due to the fact that visibility is but one of several factors determining the likelihood of an artifact being recovered. I say not so surprisingly in the sense that its logical that the amount of visibility doesn't affect that actual placement of artifacts, a distinction that archaeologists need to keep in mind. In our case, based on past experience and our background knowledge, we were able to work in regions where our chances of success were high. Yet we didn't assume that the number of artifacts in the regions we surveyed were low just because we couldn't see them.

The work of Bevan and Conolly underlines the need to take into account not only the actual process of data collection, but also the time needed to interpret and analyze it when doing a project. Their immensely technological approach also highlights the stark reality of the actual prevalence of digital archaeology within the field, which according to Colin hovers around 30%. This is due not only to adverse environmental conditions in field- rain and technology, or dirt and technology don't often cohabit peacefully, but also archaeologists desperately clinging to the tried and true (as well as cheaper) methods of manual data entry. This was pretty apparent when at the first few drops of rain in the field we had to run to cover up the total station with a tarp. I can't see the station being used very much in rainier conditions.

Our discussion helped us gain a better understanding of both the solutions and the problems that the introduction of technology brings. Discussions in a seminar may not seem as fun as digging, possibly because it isn't, but it gives us valuable perspectives into the reasons behind why we do what we do, and how we can do what we do better. Following the seminar we proceeded to retrieve our own data on the field from the total station. It turned out to be surprisingly close (Colin almost fainted) to the real thing. Yeah! No real anomalies seemed to exist regarding the points on the map. All that remained to do was to match the tags on our recovered and newly cleaned bones to the points on the map, in order to fuse the data and create a dataset for our work this year. I feel that our project thus errs on the side of success. We found an elephant, for the love of god.


Works Cited:

Bevan, A., Conolly, J., 2002. GIS, Archaeological Survey, and Landscape Archaeology on the Island of Kythera, Greece. Journal of Field Archaeology 29, 123-138.

Dibble, H.L. & S.P. McPherron, 1988. On The Computerization of Archaeological Projects. Journal of Field Archaeology 15, 431–440.

Zubrow, E.B., 2006. Digital Archaeology: a historical context. In: Digital Archaeology: Bridging Method and Theory. London, Routledge, pp. 10-31.


Saturday, October 15, 2011

Digging down through the layers: Stratigraphy at Parc Safari




Week Three for Team Danger was pretty exciting. After locating Magic's remains in a test pit during our second excavation, we arrived at the field eager to see exactly what Group B had been able to uncover. We were not disappointed.

After several minutes of bailing foul smelling water out of the elephant pit, we went to work on the task of freeing the skull from the ground. Our first goal of the day was to locate the midpoint of the cranium. After about an hour without success, we started being concerned if we would be able to remove the skull the next week if we hadn't even hit the half way mark yet! Colin was eventually able to expose it, but time was running out.

While the midpoint debacle was unfolding, other team members were hard at work expanding the pit and getting as much dirt out of there as possible. Anna and Manu expanded the pit by approximately 50cm so we could uncover the mandible and tusks. Success! As the day was coming to an end, we knew we were not even close to getting the skull ready to be removed, but we had made a considerable amount of progress. By 4:15, most of the team hit a wall of lethargy. Snack time had been scarified because of excitement, and because of time constraints. If there is one lesson to be learned, it is to never skip snack time.

As we get deeper into the excavation (pun intended,) we're starting to learn more about other methodological aspects of archaeology. For one, we're looking more closely at stratigraphy. In methodology classes, the common example of stratigraphy is a cross-section of a million years of dirt. The illistrations always show stone tools, ritual artifacts, and several storage pits intruding very clearly into another strata. Our site has none of these exciting features, but stratigraphy can come in very handy. For example, a thick, heavy clay layer that appears to be uninterupted means that we will not find any graves below it. The largest and most common strata we have found is a mixed, dark soil. This can mean that the area has been disturbed from the process of opening and closing graves. The third layer is organic trash that was buried by the zoo. There appear to have been large and small deposits of this material, which are an instant indication that there has been human activity. However, we have learned that organic trash is not an automatic indication of a grave.

Layers are more than just an indication of activity, they can tell you a lot about an area - if you're willing to listen. Roskams talks about the kinds of relationships that strata can have. For one, they can relate to their immediate neighbor and indicate changes that happened when one layer ends and the next one starts. Secondly, what he calls the "true stratigraphic relationship," is the chronological order(Roskams, 155).This can show the history of what has occurred and more importantly in what order. The final kind of relationship, is how layers correlate. A layer my have been interrupted or two layers may almost be the exact same, but are not physically connected. Looking at these connections can be informative and crucial to understanding a site. However, as Roskams notes, it can be problematic to make correlations without 100% proof they are connected.

In our excavation, we're making connections between patches of organic waste or black soil we find in a persue of graves. The organic waste may have been depositied at different times, but it has the same meaning to us whenever we find it; people dug a hole and deposited it, which mean they may have buried an animal too. Moreover, the clay layer indicates to us that we can probably stop digging there. At the back of Magic's head, a uniform clay area is becoming more exposed on the side wall. Colin has noted this could indicated the extremity of grave, but it could also just be a large clay deposit marbled into the other kinds of soil.

Furthermore, when considering stratigraphy, we need to include or exclude certain factors. In human archaeology, there is sometimes an exclusion of any non-human finds (Roskams, 180). In our case, we are doing the opposite. Mountain Dew cans, two-by-fours, and pottery shards are tossed aside to excavate the fauna!

Lastly, Roskams, highlights the importance of the "grave complex". Why was the individual buried that why and why? As we continue the excavation, we will learn more about the orientation of Magic's body and other factors, but for now we do know that h/she was in a mass grave because we have found a small scapula near the skull. Why is it there? The plot thickens, and only more excavation will tell us the answers!